Nanoengineering Particles through Template Assembly
نویسندگان
چکیده
منابع مشابه
Nanoengineering artificial lipid envelopes around adenovirus by self-assembly.
We have developed a novel, reproducible, and facile methodology for the construction of artificial lipid envelopes for adenoviruses (Ad) by self-assembly of lipid molecules around the viral capsid. No alteration of the viral genome or conjugation surface chemistry at the virus capsid was necessary, therefore difficulties in production and purification associated with generating most surface-mod...
متن کاملNanoengineering a single-molecule mechanical switch using DNA self-assembly.
The ability to manipulate and observe single biological molecules has led to both fundamental scientific discoveries and new methods in nanoscale engineering. A common challenge in many single-molecule experiments is reliably linking molecules to surfaces, and identifying their interactions. We have met this challenge by nanoengineering a novel DNA-based linker that behaves as a force-activated...
متن کاملTunable two dimensional protein patterns through self-assembly nanosphere template.
By the aim of constructing surfaces for multi-component and multifunctional bioassay, a microsphere lithography technique was employed to control the surface morphology. Two kinds of protein molecules (antibodies) were used as building blocks. As a result, dual-component biocompatible surfaces with alternate immunoglobulin micropatterns were fabricated. The employed antibodies included human Im...
متن کاملMediator-template assembly of nanoparticles.
The ability to construct size- and shape-controllable architectures using nanoparticles as building blocks is essential for the exploration of nanoparticle-structured properties. This paper reports findings of an investigation of a mediator-template strategy for the size-controllable assembly of nanoparticles. This strategy explores multidentate thioether ligands as molecular mediators and tetr...
متن کاملCombined Hydrophobicity and Mechanical Durability through Surface Nanoengineering
This paper reports combined hydrophobicity and mechanical durability through the nanoscale engineering of surfaces in the form of nanorod-polymer composites. Specifically, the hydrophobicity derives from nanoscale features of mechanically hard ZnO nanorods and the mechanical durability derives from the composite structure of a hard ZnO nanorod core and soft polymer shell. Experimental character...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemistry of Materials
سال: 2016
ISSN: 0897-4756,1520-5002
DOI: 10.1021/acs.chemmater.6b02848